Еще одно описание функтора Конна-Хигсона

Научный руководитель – Мануйлов Владимир Маркович

Макеев Георгий Сергеевич

Acпирант

Московский государственный университет имени М.В.Ломоносова, Механико-математический факультет, Кафедра высшей геометрии и топологии, Москва, Россия

E-mail: makeefu@ya.ru

Как известно, KK-теория Каспарова и ее вариант — E-теория Конна-Хигсона являются важным инструментом в теории C^* -алгебр и ее топологических приложениях. Обе теории были созданы для обхода проблемы недостаточного запаса гомоморфизмов. Так, KK-теория использует квазигомоморфизмы, а E-теория — асимптотические гомоморфизмы C^* -алгебр в качестве представителей. Для различных ситуаций удобно иметь разные варианты обобщений гомоморфизмов, которые можно использовать как представителей для этих теорий. В настоящей работе мы предлагаем новую конструкцию для представителей E-теории.

Пусть $A, B - C^*$ -алгебры, A сепарабельна, B стабильна. Через $C_b(\mathbb{R}_+, B)$ будем обозначать непрерывные ограниченные функции на \mathbb{R}_+ со значениями в B, а через $C_0(\mathbb{R}_+, B)$ – идеал в $C_b(\mathbb{R}_+, B)$, состоящий из функций, стремящихся к нулю на бесконечности. Асимптотической алгеброй над B будем называть факторалгебру $\mathfrak{A}B = C_b(\mathbb{R}_+, B)/C_0(\mathbb{R}_+, B)$. Можно показать, что \mathfrak{A} – функтор. Говорят, что два *-гомоморфизма $\varphi_0, \varphi_1 : A \to \mathfrak{A}B$ 1-гомотопны, если существует *-гомоморфизм $\check{\varphi} : A \to \mathfrak{A}IB$, такой что $\varphi_j = \mathfrak{A}\text{ev}_j \circ \check{\varphi}, \ j = 0, 1$, где ev_0, ev_1 – *-гомоморфизмы вычисления в точках 0 и 1 соответственно. Множество классов 1-гомотопности *-гомоморфизмов из A в $\mathfrak{A}B$ будем обозначать через [[A, B]]. Группа $E_1(A, B)$ E-теории Конна-Хигсона определяется как множество [[SA, B]], снабженное естественной структурой абелевой группы.

Пусть $C-C^*$ -алгебра. Через $\mathfrak{M}C$ обозначим C^* -подалгебру в $\mathcal{M}(C\otimes \mathbb{K})$, порожденную всеми бесконечными трехдиагональными матрицами с равномерно ограниченными по норме элементами из C.

В данной работе показано, что \mathfrak{M} – эндофунктор в категории C^* -алгебр. В качестве новых представителей группы $E_1(A,B)$ будем использовать *-гомоморфизмы из A в $\mathfrak{MA}B$.

Определение 1. Будем говорить, что *-гомоморфизмы $\Phi_1, \Phi_0 : A \to \mathfrak{MA}B$ 1*-гомотопны, если существует *-гомоморфизм $\check{\Phi} : A \to \mathfrak{MA}IB$, такой что $\varphi_j = \mathfrak{MA}\mathrm{ev}_j \circ \check{\varphi}, \ j = 0, 1$. Классы 1*-гомотопности будем обозначать через ((A,B)).

На множестве ((A,B)) можно корректно определить операцию сложения следующим образом. Если $[\Phi], [\Psi] \in ((A,B)),$ то возьмем в качестве $[\Phi] \oplus [\Psi]$ класс в ((A,B)) *-гомоморфизма

$$A \to \mathfrak{MA}B : a \mapsto (\mathfrak{MA}\theta_2) \sum_{i,j \in \mathbb{Z}} \begin{pmatrix} \Phi_{i,j}(a) & 0 \\ 0 & \Psi_{i,j}(a) \end{pmatrix} \epsilon_{i,j},$$

где $\theta_2:M_2\left(B\right)\to B$ – изоморфизм. Основным результатом данной работы является следующая

Теорема 1. $((\cdot,\cdot))$ и $E_1(\cdot,\cdot)$ – естественно изоморфные бифункторы из категории C^* -алгебр в категорию абелевых групп.

Источники и литература

- 1) A. Connes and N. Higson, "Déformations, morphismes asymptotiques et K-théorie bivariante" *CR Acad. Sci. Paris Sér. I Math*, vol. 311, no. 2, pp. 101–106, 1990.
- 2) E. Guentner, N. Higson, and J. Trout, "Equivariant E-theory for C*-algebras" *Memoirs of the American Mathematical Society*, vol. 148, 11 2000.
- 3) В. М. Мануйлов, "Более симметричное описание КК-бифунктора Каспарова" Функциональный анализ и его приложения, vol. 52, no. 3, pp. 32–41, 2018.
- 4) J. Cuntz, "A new look at KK-theory" K-theory, vol. 1, no. 1, pp. 31–51, 1987.
- 5) K. K. Jensen and K. Thomsen, *Elements of KK-theory. Mathematics: Theory & Applications.* 1991.
- 6) M. Dadarlat and T. A. Loring, "K-homology, asymptotic representations, and unsuspended E-theory" *Journal of Functional Analysis*, vol. 126, no. 2, pp. 367–383, 1994.
- 7) B. Blackadar, K-theory for operator algebras, vol. 5. Cambridge University Press, 1998.